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Accomplishment of fast tannin measurements is receiving increased interest as tannins are important
for the mouthfeel and color properties of red wines. Fourier transform mid-infrared spectroscopy allows
fast measurement of different wine components, but quantification of tannins is difficult due to
interferences from spectral responses of other wine components. Four different variable selection
tools were investigated for the identification of the most important spectral regions which would allow
quantification of tannins from the spectra using partial least-squares regression. The study included
the development of a new variable selection tool, iterative backward elimination of changeable size
intervals PLS. The spectral regions identified by the different variable selection methods were not
identical, but all included two regions (1485—1425 and 1060—995 cm™"'), which therefore were
concluded to be particularly important for tannin quantification. The spectral regions identified from
the variable selection methods were used to develop calibration models. All four variable selection
methods identified regions that allowed an improved quantitative prediction of tannins (RMSEP =
69—79 mg of CE/L; r=0.93—0.94) as compared to a calibration model developed using all variables
(RMSEP = 115 mg of CE/L; r = 0.87). Only minor differences in the performance of the variable
selection methods were observed.

KEYWORDS: FT-MIR spectroscopy; tannins; red wine; variable selection; partial least-squares regression

INTRODUCTION

Tannins are the most abundant group of phenolic compounds
typically found in red wines (/), and the tannins play an
important role in the mouthfeel properties and color stability
of red wines (2—4). According to their chemical structure, tannins
in wines are commonly classified as either condensed tannins
or hydrolyzable tannins (Figure 1). Condensed tannins originate
primarily from the skins and seeds of grapes and are oligomers
or polymers of flavan-3-ol subunits (termed catechins), whereas
hydrolyzable tannins mainly originate from oak (and thus occur
in wines that have been aged in oak barrels) and are gallic acid
and/or ellagic acid esters of glucose (5, 6).

Tannins have the ability to precipitate with proteins present
in saliva. This interaction is presumed to be responsible for the
astringent sensation of red wines (2). The ability to precipitate
with proteins has been used for the quantitative analysis of
tannins with bovine serum albumin (BSA) (7, 8). Tannin
concentrations measured by protein precipitation have been
found to correlate particularly well with the perceived astrin-
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gency of red wines (4), and tannin analysis by protein precipita-
tion has been recommended within winery settings (9). As
reviewed elsewhere, several other principles for tannin analysis
in wines have been reported, for example, precipitation by
methyl cellulose, HPLC, and various colorimetric assays (6, 10).
These types of methods are all slow, and the time requirement
for accomplishing these tannin analyses currently represents a
major obstacle for the implementation of such tannin analysis
in the array of routine wine quality control measurements at
wineries. Due to the increasingly recognized importance of
tannins and hence tannin measurement in relation to red wine
quality, a significant need thus exists for more rapid analytical
techniques for quantification of tannins.

Employment of Fourier transform mid-infrared (FT-MIR)
spectroscopy has recently emerged as a possible solution for
rapid measurement of wine tannins (//, 72). FT-MIR has
already found use in the industry for the analysis of several
other important components in wine, including ethanol,
organic acids, and sugars (13, 14). Interference between the
characteristic absorption bands of major wine components
and tannins poses a problem for direct quantification of
tannins in wines by infrared spectroscopy. This problem has
been overcome by sample purification using solid phase
extraction (/7), but again this strategy is not feasible for
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Figure 1. Examples of chemical structures of the two different classes of tannins: hydrolyzable tannins (A) and condensed tannins (B).

accomplishing rapid tannin analyses in industrial wine
production. An alternative way is to identify the characteristic
spectral regions of tannins, which do not suffer from this
interference, and in turn use this identification to develop
calibration models that then allow the rapid quantitative
assessment of tannins by FT-MIR. A number of tools to
identify important spectral regions for improving partial least-
squares (PLS) calibrations are available and include synergy
interval PLS (75), backward interval PLS (/6), and genetic
algorithm PLS (/7). In brief, some of the main features of
the methods are the following: synergy interval PLS finds
the combination of up to four spectral intervals, which leads
to the best PLS model; backward interval PLS eliminates
the most noninformative regions of the spectra iteratively;
and, finally, the genetic algorithm PLS finds the best
combinations of spectral intervals using an evolutionary
approach. One particular drawback of these present methods
is that they all require predefined interval sizes, which may
lead to identification of spectral intervals covering both
noninformative and informative regions.

This study was undertaken to assess and compare different
variable selection methods for the identification of important
spectral regions for the quantification of red wine tannins by
FT-MIR spectroscopy and the method of PLS regression.
Furthermore, we wanted to evaluate the applicability a new
variable selection method involving an iterative backward
elimination of changeable size intervals.

MATERIALS AND METHODS

Materials. Chemicals for tannin analysis, including BSA (fraction
V powder), tartaric acid, potassium tartrate, sodium dodecyl sulfate
(SDS), triethanolamine (TEA), ferric chloride hexahydrate, and (+)-
catechin hydrate, were all of analytical grade and purchased from
Sigma-Aldrich (St. Louis, MO). Commercial tannin extracts from grapes
(tannin grape) and oak wood (Tannivin Superb) were purchased from
Erbsloh Geisenheim AG (Geisenheim, Germany). One hundred and
twenty-eight commercial red wines were purchased from local shops
in Denmark. The wines were selected to represent a wide range of
different vintages (11 vintages ranging from 1996 to 2006), grape
varieties (covering at least 30 different varieties), and production
countries (16 different countries).

Mid-Infrared Spectra. Spectra in the mid-infrared range were
measured by Fourier transform interferometry on a Winescan Auto
spectrometer (FOSS, Hillergd, Denmark) equipped with a liquid flow
system and a 37 um calcium fluoride cuvette, thermostated at 40 °C.
Transmission infrared spectra of 1060 data points in the range between
5012 and 926 cm™ ! of all wines were measured in triplicate. The
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Figure 2. FT-MIR spectra of the 128 commercial wines (5012—926 cm ™).
The noninformative and noisy parts (specified by the gray rectangles) of
the spectra are discarded to retain only the “good range” spectral regions.

noninformative and noisy parts of the full spectra were removed to
give the “good range” region of 265 data points in the following regions:
2969—2699, 1812—1716, and 1577—933 cm™ ' (Figure 2).

Tannin Analysis. Tannin concentrations of all wines were
measured in duplicate using a slightly modified method of Harbertson
et al. (7). Briefly, the method relies on tannins being precipitated
with BSA, redissolved and measured by a color reaction with ferric
chloride. Prior to analysis, wines were diluted in a model wine
solution of 12% v/v ethanol containing 5 g/L of tartaric acid, which
had been adjusted to a pH value of 3.3 with NaOH. Modifications
to the original method were as follows: The precipitation step was
conducted for 30 min instead of 15 min, the centrifugation speed
for forming the tannin—protein pellet was increased from 13500g
to 14000g, and finally the SDS/TEA buffer volume for redissolving
the tannin—protein pellet was increased from 0.875 to 1.5 mL to
allow background measurement (A®S) on a 1 mL sample, which
was then reacted with 0.125 mL of iron chloride (11.4 mM FeCl;
in 11.4 mM aqueous HCl), and the absorbance was measured after
10 min (AF*“). Dilutions of the sample in the model wine solutions
were carried out to give a tannin response (calculated as 1.125471
minus AB®) between 0.3 and 0.75, which was defined as the valid
range of the assay (/8). Tannins were reported in milligrams of
catechin equivalents (CE) per liter from a linear standard curve of
the color reaction between catechin and ferric chloride [absorbance
= 0.006258 x (concentration of catechin in mg/L); r = 0.9997].

Spiking Experiments. Separate solutions with 2 g/L oak tannin,
(+)-catechin, and grape tannin respectively dissolved in 20% v/v
aqueous ethanol were prepared, and the FT-MIR spectra of the
solutions were measured. The spectral characteristics of the three
products were determined as the difference between the FT-MIR
absorbance spectra of the solutions and the FT-MIR absorbance
spectra of the aqueous ethanol solution. A red wine (Cabernet
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Sauvignon, Chile, 2005) was spiked with different levels (0, 0.1,
0.2, 0.5, 1.0, 1.5, and 2.0 g/L) of grape tannin and analyzed by
FT-MIR spectroscopy. For each spiking level, the dose—response
signal was evaluated as the difference between the FT-MIR
absorbance spectrum of the spiked wine sample and the unspiked
wine. The wine was analyzed to have a tannin level of 298 mg of
CE/L, and the grape tannin powder contained 355 mg of CE/g of
tannin powder.

Model Development. Multivariate calibration models were devel-
oped in MATLAB R14 (MathWorks, Natick, MA) using the PLS
toolbox 4.02 (Eigenvector Research, Natick, MA). The infrared
absorbance spectra were mean centered, and calibration models for
measurement of the determined components were developed with PLS
regression using cross-validation in nine segments. The triplicate spectra
were included in the models to make it possible for the model to
compensate for replicate variations between the spectra. The optimal
number of latent variables in each model was determined from the
minimum root-mean-square error of cross validation (RMSECV),
allowing a maximum of 10 latent variables. The first 81 wines were
used for developing the calibration models both for the “good range”
region (265 data points), the fingerprint region from 1577 to 933 cm ™'
(168 variables), the expected main region for phenolics from 1157 to
1577 em™! (110 variables), and for spectral regions of the reduced
spectrum identified by different variable selection methods described
below. The ability of the developed calibration models to predict the
tannin concentration in wines was evaluated using an independent
validation set of 47 wines to calculate the correlation coefficient between
the measured and predicted values and the root-mean-square error of
prediction (RMSEP). The wines used for validation were analyzed at
a different point of time from the calibration wines to ensure
independence of the validation set.

Variable Selection Methods. Four different variable selection
methods were used to develop calibration models from the calibration
set (81 wines) with segmented cross-validation in 9 segments, allowing
up to 10 latent variables. The prediction performance of the calibration
models was evaluated from the external validation set (47 wines). The
following variable selection methods were evaluated: backward interval
PLS (16) (bi-PLS; using 17 intervals and up to 10 latent variables),
synergy interval PLS (/5) (si-PLS; using 17 intervals, 4 regions, and
up to 10 latent variables), genetic algorithm PLS (/7) (GA-PLS; using
a window size of 15 and up to 10 latent variables), and iterative
backward elimination of changeable size intervals PLS (IBECSI-PLS,
as described below) and compared with models developed using
manually selected spectral intervals. The predictive performances of
the models were compared pairwise from a F test of the RMSEP values:
F(n1,n) = RMSEP,/RMSEP,?, on a p < 0.05 level (19).

Iterative Backward Elimination of Changeable Size Intervals
PLS. A new variable selection method, ““iterative backward elimination
of changeable size intervals PLS” (IBECSI-PLS), was developed using
the PLS toolbox 4.02 (Eigenvector Research). The IBECSI-PLS method
works by an iterative elimination of intervals of changeable sizes from
the spectra, by minimizing the RMSECYV of the PLS model (Figure
3). The intervals were found by the following routine: The spectra were
divided into a number of equally sized intervals (here 20 intervals),
and PLS regression models with each of the intervals left out were
calculated. The center point of the interval, which gave the lowest
RMSECYV when left out, was set as the starting point for the region to
be eliminated (step 1 in Figure 3). The region to be eliminated was
then stepwise expanded one data point at a time in the direction (left
or right) causing the lowest RMSECV(step 2 in Figure 3) and repeated
until a local minimum of RMSECV was found and the region was
eliminated (step 3 in Figure 3). Steps 1 —3 were repeated for the reduced
spectra, and the routine was repeated until an optimal region could be
identified (step 4 in Figure 3)—as discussed under Results and
Discussion.

RESULTS AND DISCUSSION

Tannins in Wines. The concentration of tannins in the 128
commercial wines ranged from 92 to 1060 mg of CE/L (Table
1) and covered the most typical values of tannin concentrations
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Figure 3. Overview of IBECSI-PLS for variable selection.

Table 1. Descriptive Statistics of the Red Wine Samples Used for
Calibration and Validation

tannin concentration?

sample Ne range mean SD
all samples 128 92-1060 456 181
calibration 81 112-1060 472 180
validation 47 92-830 429 181

@Tannin concentration in mg of CE/L. ® Number of samples.

in red wines reported by others using the same analytical
method (4, 7, 11, 12, 20, 21). However, in some cases tannin
levels have been reported as high as 1655 mg of CE/L in
commercial wines (/2). For the development of the calibration
models for the quantification of tannins by FT-MIR spectroscopy
using the protein precipitation data as reference, samples were
split into a calibration set (81 wines) and a validation set (47
wines) with similar standard deviations and comparable ranges
of the tannin levels (Table 1).

Spectral Features of Tannins. The spectral response of a
commercial grape tannin product at different levels in the FT-
MIR spectrum of a selected red wine (Cabernet Sauvignon,
2005) was investigated (Figure 4). Although the absorbance
values of the tannin signals were very low compared to the wine
spectra (Figure 2), there was a systematic spectral dose—response
effect of the added grape tannins, which was particularly evident
in the regions 2969—2699 and 1577—1060 cm ™' (Figure 4).
On the other hand, small or no distinct grape tannin signals
were evident in the regions from 1812 to 1716 cm™ ' and from
1060 and 933 cm™'. The occurrences of the small negative
absorbances observed in some regions were primarily ascribed
to small drifts in the FT-MIR spectra with time. The most
prominent signals for the grape tannins were: two major peaks
at 1520 and 1445 cm ™' in the typical region of aromatic ring
stretches (22) (Table 2), a peak at 1285 cm ™', corresponding
to the C—O stretch of the pyran derived part of flavonoid based
tannins (5), and several peaks between 1400 and 1050 cm™ !,
in the overlapping regions of OH stretch and deformations of
phenols and CH deformations in aromatic compounds (22).

The relatively small spectral response from tannins in the
wine spectra, combined with the known absorptions in the same
spectral region as tannins of major wine components, such as
ethanol and organic acids (23), complicates the use of infrared
spectroscopy for the quantification of tannins in wine. Variable



Jensen et al.

3496 J. Agric. Food Chem., Vol. 56, No. 10, 2008
x 10"
6
2.0g/L
sl 9
1.5g/L
4k 1.0g/L
0.5g/L
3k

na

ok---=- EE i

ADsorbance

2k
3k

a7 1 L 4/ L 21 1 1 1

2969 2850 2699 1812 1716 71577 1400 1200 1000 93]

Mlcoumbor copad

Figure 4. Spectral response of grape tannins to the spectra of a red wine at different concentrations (0.5, 1.0, 1.5, and 2.0 g/L) in the “good range”

regions.

Table 2. Known Mid-Infrared Bands for Tannins in the Informative
Regions (2996—2699, 1812—1716, and 1577—933 cm™") of the
Spectrum (5, 11, 22)

functional group group frequencies (cm™")

aromatic overtones and combinations 2000-1700
C=0 stretch of esters 1750-1740
C=C stretch of aromatic rings 1650-1430
C—0—H deformation of phenols 1390-1310
C—OH stretch of phenols 1340-1160

C—O stretch of flavonoid pyran ring 1285
C—H in-plane deformation of aromatic compounds 1270-1000

selection provides a way to remove interfering or noninformative
regions of the infrared spectra, by which the models may be
improved and in turn improve the accuracy of tannin
measurement.

Iterative Backward Elimination of Changeable Size In-
tervals PLS. A new variable selection, IBECSI-PLS, which
iteratively removes continuous regions from the spectra, was
developed. As opposed to many other variable selection
methods, the interval size of the eliminated region in IBECSI-
PLS is found by a stepwise expansion of the region to be
removed, which could be useful when informative and
interfering spectral features are close. The IBECSI-PLS
method was applied to the tannin data to remove the
(differently sized) interfering or noninformative regions from
the spectra. Due to the risk of overfitting the data by too
extensive an elimination of variables, it is important to
eliminate variables only while it gives a considerable decline
in the model error and to validate the performance of the
final model with independent samples. The optimal number
of iterations was manually set to 11, because only minor
declines in the model error were observed in the further
iterations (Figure 5B). Additionally, only a few variables
were removed per iteration in the further iterations (Figure
5A), also indicating that little further improvement was
possible. The validation of the model performance with
independent samples is discussed further below.

Spectral Regions for Tannin Quantification. The four
variable selection methods for finding the best regions in the

“good range” of the IR spectra were evaluated to see if the
calibration models could be improved. The spectral regions
identified either manually or by the variable selection methods
are illustrated in Figure 6 and compared with the spectral
characteristics of red wine, oak tannin, (+)-catechin, and grape
tannin. The spectral characteristics of oak tannin, grape tannin,
and (+)-catechin were similar to the reported spectral charac-
teristics of hydrolyzable tannins, grape tannin, and (+)-catechin
(5). Although the regions identified by the four variable selection
methods were not identical, two regions were selected by all
four methods: the region from 1060 to 995 cm™', which was
dominated by high absorption of the OH stretch in ethanol, and
the region between 1485 and 1425 cm ™', at which grape tannin
gave a distinct absorption peak (Figure 6). Furthermore, all
variable selection methods included wavelengths in the region
from 2969 to 2699 cm™ ! (Figure 6). The selected regions were,
however, not the same for the different methods and, due to
the lack of distinct peaks, thereby likely functioned as reference
points in the spectra. Both bi-PLS and IBECSI-PLS retained
wavelengths around 1750 cm™', with IBECSI-PLS retaining a
much narrower region than bi-PLS. Oak tannins had a spectral
response matching the C=O stretches of the ester group typically
found in hydrolyzable tannins (Figure 1) and wavelengths
around 1200 cm ™', which matched some of the region of C-OH
stretches of phenols (Table 2). Others have reported that the
wavelength around 1285 cm ™' corresponds to the C—O stretch
of the flavonoid pyran ring structure and may be used to
distinguish condensed and hydrolyzable tannins (5). However,
none of the variable selection methods retained the region around
1285 cm™ ! for the quantitative analysis of tannins from the FT-
MIR spectra of red wines. The elimination of this region for
tannin quantification may be a consequence of the overlapping
peak from (+)-catechin and the missing peak from oak tannins
at 1285 cm™! (Figure 6).

Measurement of Red Wine Tannins with Mid-Infrared
Spectroscopy. The performances of the PLS models for
measurement of wine tannins were evaluated from the prediction
errors (RMSEP) and correlation coefficients (ry,) between the
actual and predicted tannin concentrations of independent
validation samples (Table 3). The results showed that the PLS
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Figure 5. Variable selection by IBECSI-PLS results in iterative elimination
(B). The arrow indicates optimal number of iterations.
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Figure 6. Identified spectral regions for tannin quantification obtained by different variable selection procedures in relation to the IR spectrum of a wine
sample (scaled down 100 times) and the IR signals of oak tannin, (+)-catechin, and commercial grape tannin.

Table 3. Overview of Calibration and Validation Results for Quantification
of Tannins in Red Wines from PLS Models Using the Spectral Regions
Identified from Variable Selection Methods

no. of

selected variables  variables LV? RMSEC? RMSECV® RMSEP®® 4
good range region 265 10 65 92 115¢ 0.87
fingerprint region 168 10 69 91 92bc 091
main phenolic region 110 10 54 75 88b 0.90
si-PLS region 62 10 53 65 77ab  0.93
bi-PLS region 78 10 53 65 69a 0.94
GA-PLS region 70 9 55 69 79ab 093
IBECSI-PLS region 97 10 49 59 75ab  0.94

@ Number of latent variables. © Root mean square error of calibration, cross-
validation, and prediction, respectively, in mg of CE/L. ¢ The same letters indicate
no significant (p < 0.05) differences between the predictive abilities of the models.
9 Correlation coefficient between the measured and predicted tannin levels.

model using the main phenolic region was significantly better
than the model using all variables in the “good range”,
decreasing the RMSEP values from 115 to 88 and increasing
the correlation coefficients from 0.87 to 0.91 (Table 3).
Improvements in the RMSEP values to between 69 and 79 mg
of CE/L and the correlation coefficients to ~ 0.94 were obtained
for the four variable selection methods. Although all models
using the four variable selection methods were significantly
better than using the “good range” region, only the bi-PLS model
was statistically better than the model of the main phenolic
region (Table 3). The differences in the RMSEP values between
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Figure 7. Measurement of red wine tannins (in mg of CE/L) by FT-MIR
spectroscopy using the spectral region identified by IBECSI-PLS variable
selection method.

the four variable selection methods were relatively small and
were not found to be statistically different from each other
(Table 3). Recently it was shown that little or no improvement
in the measurement of tannins by mid-infrared spectroscopy was
obtained by variable selection, when the majority of the
interfering substances were removed using solid phase extraction
and evaporation (/). The considerable improvements by
variable selection found in this study were ascribed to the
presence of major interferences from other wine components
in the infrared spectra.

Figure 7 shows the correlation between the actual and
predicted levels for the model developed from the region
identified by IBECSI-PLS. The repeatability of tannin levels
(in percentage of the mean value) predicted from the triplicate
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Figure 8. Prediction of tannin content by FT-MIR spectroscopy of a red
wine (having 298 mg of CE/L tannin) spiked with 0, 0.1, 0.2, 0.5, 1.0,
1.5, and 2.0 g/L grape tannin corresponding to 0, 36, 71, 178, 355, 533,
and 710 mg of CE/L. The recovered tannin amount (as a percentage of
the added amount) is given next to the data points.

spectra of the validation samples was 3.5%. This was
considerably higher than the repeatability of the tannin
analysis reference method of 0.95% determined from dupli-
cate measurements, but still acceptable. The prediction ability
of the developed model (RMSEP = 75 mg of CE/L; r =
0.94; Table 3) was not as good as the model reported by
Fernandez et al. (RMSEP = 51 mg of CE/L; r = 0.96),
which, however, includes only a single grape cultivar and
requires extensive sample purification (/7). The prediction
ability was similar to the reported values of Versari et al.
(RMSECV = 63 mg of CE/L; r = 0.99), who also used FT-
MIR spectroscopy, but their method was developed using a
high number of latent variables for only 20 wines without
any independent validation of the model (/2). Skogerson et
al. have recently shown that tannins can be measured by
ultraviolet—visible (UV—vis) spectroscopy (RMSEP = 66
mg of CE/L; r = 0.93) in young Australian wines and
fermenting juices (20). A similar accuracy (RMSEP = 75
mg of CE/L; r = 0.94) was found in our study with
commercial wines covering a wide range of vintages,
production countries, and grape cultivars using FT-MIR
spectroscopy. The performance of the developed model was
further tested for its ability to predict the tannin levels in a
red wine spiked with different levels of grape tannin (Figure
8). Although the tannin content of the unspiked wine was
predicted to be considerably higher (422 mg of CE/L) than
the actual level (298 mg of CE/L), the spiked tannin levels
gave a good linear response (r > 0.99) and acceptable
recoveries for tannin levels higher than ~71 mg of CE/L.

The present study demonstrated that particularly important
spectral regions could be identified almost equally well by the
four variable selection methods: si-PLS, bi-PLS, GA-PLS, and
IBECSI-PLS. The identified regions could be used to develop
calibration models, which allowed the measurement of tannins
in wines by FT-MIR spectroscopy. The results obtained
demonstrate that FT-MIR spectroscopy (coupled with a proper
calibration model) is a good option for the rapid quantification
of tannins in red wines.

ABBREVIATIONS USED

BSA, bovine serum albumin; CE, (+)-catechin equivalents;
LV, latent variables; PLS, partial least-squares; RMSEC, root-
mean-square error of calibration; RMSECYV, root-mean-square
error of cross-validation; RMSEP, root-mean-square error of
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prediction; SD, standard deviation; SDS, sodium dodecyl sulfate;
TEA, triethanolamine; UV —vis, ultraviolet—visible.
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